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We report the results of extensive calculations of the depletion interaction between the large hard spheres in
a quasi-two-dimensional �q2D� binary mixture of large and small hard spheres. Two definitions of the depletion
interaction have been examined, and the dependencies of both on the large and small sphere densities, and the
confining wall separation have been explored. The results of the simulations show that the depletion interaction
is enhanced relative to its magnitude in a three-dimensional binary mixture with the same density, composition
and sphere diameter ratio and that it has a complex dependence on the large sphere-large sphere separation.
There are qualitative differences between the properties of q2D and mathematical 2D systems that are relevant
to the interpretation of experimental data.
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I. INTRODUCTION

The work reported in this paper was undertaken to pro-
vide a detailed molecular interpretation of the enhancement
of the depletion interaction in a quasi-two-dimensional �q2D�
binary colloid mixture, relative to that in the equivalent
three-dimensional �3D� system, that has been observed in
recent experiments �1�. There are good reasons to expect that
the depletion interaction in a q2D binary colloid system will
be somewhat different from that in a 3D system with the
same composition and sphere diameter ratio. For example,
the extant analyses of the character of the wall sphere inter-
action in a binary hard sphere mixture show that there is an
enhancement of the wall-large sphere effective interaction
that is generated by the small spheres in the mixture �2,3�.
The origin of this enhancement is the increase in volume
available to the centers of the small �S� spheres when the
wall and the center of a large �L� sphere are separated by less
than the sum of the large and small sphere diameters ��L and
�S, respectively�. Since, in a q2D system a pair of colloid
particles is always close to the walls �4,5�, it is to be ex-
pected that the depletion interaction between them will be
altered from that in 3D. However, almost all of the existing
theoretical descriptions of the depletion interaction between
spheres restrict attention to the properties of unconfined 3D
binary mixtures of large and small hard spheres. The
Asakura–Oosawa model of such mixtures, which assumes
that the small particles can be treated as an ideal gas, predicts
that the depletion interaction is purely attractive in the par-
ticle separation range, with magnitude proportional to the
small particle density �6,7�. Later theoretical analyses have
removed the restrictions imposed in the Asakura–Oosawa
model; they find, in general, that the depletion interaction is
monotone attractive when the small sphere density is small,
but that it becomes structured when the small sphere density
is increased �8–11�.

In the q2D systems of interest to us the large and small
colloid particles are confined between plates that are sepa-
rated by less than �L+�S, so that the small colloid particles
cannot pass “over” or “under” the large colloid particles,

although they can pass “around” them. Because the centers
of the large spheres can lie somewhat above and below the
center plane of the q2D container, and because the small
sphere centers can move in a constrained 3D volume, the
systems we consider are different from the conventional 2D
model mixture of large and small disks, the centers of all of
which are constrained to move in one plane. An extensive
study of the depletion interaction in a binary hard disc mix-
ture has been reported by Castaneda-Priego et al. �12�, We
compare our findings with theirs in Sec. IV. We argue that
the systems we consider are closer to the experimental real-
izations of q2D binary mixtures than are 2D systems since
the experimental studies concern large colloid motion in the
presence of smaller colloids in a cell with wall separation
that is both slightly greater than the diameter of the large
colloid particle and a multiple of the diameter of the small
colloid particle that is greater than the ratio of particle diam-
eters. We have carried out Monte Carlo simulations of q2D
binary hard sphere mixtures for a range of plate separations
defining the q2D sample cell and for a range of large and
small sphere densities. The results of these simulations pro-
vide a useful data set against which analyses of diverse prop-
erties of q2D binary hard sphere mixtures can be tested. The
particular test of interest to us is the magnitude and form of
the depletion interaction between a pair of large hard
spheres. As already indicated, it is expected that the volume
excluded to the center of a small particle by a pair of large
particles depends on the proximity of the particles to the
walls of the q2D container, and the large sphere–large sphere
depletion interaction that is generated by the small spheres is
thereby enhanced. The results of our simulations show this
enhancement, but they fail to account for the magnitude of
the observed enhancement of the depletion interaction in the
q2D system �1�. One possible explanation for this failure, the
existence of distributions of large and small sphere diameters
in the experimental system, is described in another paper
�13�; it too fails to account for the observed enhancement of
the depletion interaction. Our results, and those of other cal-
culations �13� suggest that the real experimental situation is
not completely modeled by the simulations. One such omis-
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sion, neglect of the character of the interface between the
hydrophobic sample cell walls and the water suspension of
colloid particles that exists in the experimental system, is
likely more important than previously believed. We suggest
that an interplay between neglected capillary forces and con-
finement forces leads to enhancement of the q2D depletion
interaction beyond that calculated in this paper.

II. SIMULATION DETAILS

We have calculated, by Monte Carlo simulations, the
properties of a binary hard sphere mixture constrained to
occupy the space between two flat smooth hard plates. To
create a q2D assembly of particles the separation of the
plates, H, was required to satisfy the constraint H�2�L; the
range of H actually studied was 1.1�L�H�1.8�L. All of
our calculations were carried out in the canonical ensemble
representation, with NL large hard spheres, NS small hard
spheres and with a small sphere to large sphere diameter
ratio of q��S /�L=0.30. Periodic boundary conditions were
applied to the simulation cell in the x and y directions. By
virtue of the constraint on H, in this simulation cell the mo-
tions of the large sphere centers are quasi-two-dimensional,
hence we characterize the large hard sphere subsystem with
the density �L=NL /A, with A the area of the simulation cell.
As to the motions of the small sphere centers, when 1.1�L
�H�1.3�L the small spheres cannot pass “over” or “under”
the large spheres, although they can pass “around” them, and
when 1.3�L�H�1.8�L the small spheres can move in three
dimensions. Simulations have been carried out for each value
of H considered, as a function of �L, and the small sphere
packing fraction, �S��S

3NS /6V, with V the volume of the
simulation cell. Variation of the large sphere density was
achieved by changing the simulation cell dimensions and
variation of the small sphere packing fraction by changing
NS. All of our results are reported in reduced units defined by
setting the large sphere diameter �L=1.

We have chosen to carry out simulations for liquid densi-
ties close to but below the liquid–solid phase transition; at all
densities studied the binary hard sphere mixture is isotropic
in the xy plane. The density distribution therefore depends
only on the distance from the wall and we collect ��z� along
the perpendicular to the wall. We notate the large sphere pair
correlation function as gLL�r1 ,r2 ,z1 ,z2��g2��r1−r2� ,z1 ,z2�
where Ri= �xi ,yi ,zi� is the location of the center of particle i.
In order to display the dependence of g2 on �r1−r2�=r12 we
take thin parallel slices of width 2�z=0.1 at the center of the
cell �z1=z2= ±�z� and close to the walls �z1=z2= ± �h
−�z� ,h= �H−�L� /2� and collect pair correlation functions
within. The thicknesses of the slices are fixed at 2�z=0.1,
regardless of the value of H; hence the system is viewed as a
single slice when H=1.1 and the three slices are immediately
adjacent to each other when H=1.3.

III. SIMULATION RESULTS

A. Density distribution perpendicular to the wall

The normalized density distributions of the large spheres
in the binary mixture along the z axis, �L�z�, are displayed in

Fig. 1�b� for several values of H for fixed values of �L=0.8,
�S=0.028, and q=0.3. The values of H for which data are
displayed, namely 1.1, 1.3, 1.5, and 1.8 �in units of �L�,
correspond to plate separations of 3.3, 4.3, 5.0, and 6.0 �S.
When H=1.8�L, the density of large spheres in the center of
the q2D cell is small �of order one-fifth the density at the
wall�. The exclusion of the large spheres from the center of
the cell is greater than in the corresponding one component
large sphere system �see Fig. 1�a��, consistent with studies of
the influence of small spheres on the single wall-large sphere
effective interaction �2�. The distribution of large sphere cen-
ters parallel to the wall exhibits a tendency towards buckling
similar to that found in simulations of the solid phase �5,14�.
This buckling is more prominant at smaller values of H when
small spheres are present.

Figure 2 displays the small sphere distribution function
�S�z� for the same parameter set as in Fig. 1�b�. The results
clearly show that the density of small spheres around the
large spheres is not uniform; the contact density at the wall is
very high and the density distribution between the walls is
almost flat. A necessary implication of this result is that the
Asukura–Oosawa model is not applicable in the q2D systems
we have studied. The Asukura–Oosawa assumption that the
small spheres form an ideal gas �6,7� implies that the distri-
bution of small spheres will be uniform along the z axis,

FIG. 1. �a� �L�z� in the absence and �b� in the presence of small
spheres ��S=0.028� as a function of H when �L=0.8 and q=0.3.
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independent of the presence or absence of large spheres �15�;
the obvious source of the failure is the neglect of excluded
volume interactions between the small hard spheres. Com-
parison of �S�z� in the binary hard sphere mixture with the
equivalent distribution function in a one-component small
sphere system as a function of H �4� shows that, as H in-
creases, �S�z� in the presence of large spheres is more spread
out than in their absence, and that the ordering of the small
spheres parallel to the cell walls is almost destroyed by the
presence of the large spheres.

B. Pair correlation functions

The large sphere pair correlation function depends on z1
and z2 as well as the separation of the particles. We note that
for the large spheres in our q2D system �z1 ,z2�� �H−�L� /2
=h. Figure 3 shows the dependence on H of the large sphere
pair correlation functions in �a� center and �b� wall slices of
width 2�z=0.1�L. Note that the positional correlation weak-
ens as H increases. The weakening of the positional correla-
tion in the slice adjacent to the wall is rather extreme when
H=1.8, which appears to be anti-intuitive given the large
particle density in that layer. However, the slices adjacent to
the wall are not independent of each other since we are
working at wall separations smaller than 2�L. The slices are
divided according to the positions of the center of the
spheres, but spheres in different slices actually overlap in the
z direction due to the nonzero particle size. The positions of
the large spheres in the slice adjacent to one wall, therefore,
tend to be anticorrelated with the positions of the large
spheres adjacent to the other wall, because of the hard
sphere-hard sphere interactions between them, which leads to
destruction of positional correlation within the individual
slices.

It is important to note that in this series of calculations it
is the two-dimensional number density �L that is kept con-
stant as H increases; calculations in which the 3D density of
the large spheres is kept constant are not feasible, as one then
encounters a phase transition going from 3D to q2D �14�.

The influence of variation of the small sphere density
�hence variation of the depletion interaction� on the large
sphere pair correlation function is shown in Fig. 4 for the
fixed wall separation H=1.1. At this wall separation the cen-
ter and wall slices coincide with each other and we view the
system as a single slice. The influence of the depletion inter-
action is most pronounced at the first peak of the correlation
function, changing the shape of the falloff from the peak as
the particle separation increases. The presence of small
spheres in the hard sphere mixture also slightly increases the
amplitude of the second peak and changes the shape of its
falloff as the particle separation increases. There is very little
influence of the small sphere concentration on the third peak
except for a slight phase shift. These changes are consistent
with the view that the small spheres alter the ordering of the
large spheres in the binary hard sphere mixture.

C. Depletion potential

The depletion interaction is designed to provide a quanti-
tative measure of the influence of one component in a binary
mixture on the structure of the other component when the

FIG. 2. �S�z� as a function of H in a q2D binary hard sphere
mixture with �L=0.8, q=0.3, and �S=0.028.

FIG. 3. Large sphere pair correlation functions �a� in the center
and �b� at the wall of the q2D cell as a function of H when �L

=0.8, q=0.3, and �S=0.028.
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latter is considered to be a pseudo-one-component system.
That quantitative measure can take different forms depend-
ing on the way the difference in structure is viewed. For
example, if interest is focused solely on how the pair corre-
lation function of a hard sphere liquid is influenced by addi-
tion of smaller hard spheres, one possible definition of the
depletion interaction is the difference between the potentials
of mean force for the large spheres with the same density in
the systems with and without the small spheres:

�	 = 	mix − 	0 = − kBT ln gLL
mix + kBT ln gLL

0 . �3.1�

In Eq. �3.1�, 	0 and gLL
0 are the potential of mean force and

the pair correlation function in the pure large sphere system
with the same large sphere density as in the binary mixture.
This definition is applicable to fluid mixtures with arbitrary
density and composition. It has the advantage of separating
directly the structure that is associated with the packing of
the large spheres when present alone from that induced by
the addition of small spheres. As defined, �	 is the excess
work needed to bring a pair of large spheres from infinite
separation to separation in the presence of a specified density
of small spheres, relative to carrying out the same process in
the absence of small spheres.

A different measure of the depletion interaction is com-
monly used in the literature on this subject, namely the dif-
ference between the effective pair interaction between the
large spheres in the presence and absence of the small
spheres. Using the same notation as in Eq. �3.1�,

�ueff = ueff
mix − uLL

0 . �3.2�

From the point of view of an experimenter, �	 can be cal-
culated directly from the measured large particle pair corre-
lation functions of the mixture and the corresponding pure
liquid. However, to calculate �ueff from the same experimen-
tal data the pair correlation function must be inverted using,
say, an integral equation representation, or a reverse Monte
Carlo simulation must be carried out, all under the assump-
tion that the effective interaction between the large spheres is

pair additive. From the point of view of a theorist, the notion
behind the definition �3.2� is that integration over the coor-
dinates of the second component spheres maps the mixture
onto a pseudo-one-component system in which the pair in-
teraction is ueff

mix. The most widely accepted definition of the
depletion interaction is based on the McMillan–Mayer theory
of solutions �16�, and it deals with the case of a pair of large
particles embedded in a sea of small particles held at a speci-
fied chemical potential. That definition is not the most useful
when the system under examination has a high density of
large particles. In this paper we compare the descriptions of
the q2D depletion interaction defined in Eqs. �3.1� and �3.2�.
To calculate �ueff we make use of the inverse Monte Carlo
technique described in �17�, with the iterative algorithm de-
scribed by Frydel and Rice �13�.

For an unconstrained �3D� pure hard sphere system, uLL
0 is

zero for r12
1. We are interested in how the structure of the
large particles in a q2D system in planes parallel to the con-
fining walls varies along the line perpendicular to the con-
fining walls. In the q2D systems that we are interested in,
H�1.8, so the particles in a particular z-slice overlap the
plane of centers of the particles in adjacent z-slices. Then the
effective potential that determines the structure in one slice is
not uLL

0 , but rather one that includes the influence of the
particles outside of the slice. It is therefore more appropriate
to rewrite Eq. �3.2� to apply to each slice �i� separately:

�ueff�i� = ueff
mix�i� − ueff

0 �i� . �3.3�

Of course, Eq. �3.3� reduces to �3.2� for each slice in the
limit �L→0. However, when �L�0 the effective potential
that generates the pair correlation function in slice i is a
density dependent free energy that differs considerably from
the bare hard core interaction.

Figure 5 shows the effective pair potential for pure hard
spheres, ueff

0 �i�, in the q2D simulation at the center of the cell
and at the walls of the cell. There are substantial differences
between ueff

0 �i� and uLL
0 . When H=1.1, the entire q2D system

is treated as a single slice since each of the slices is 0.1�L
thick. In that case ueff

0 �i� is sensibly indistinguishable from
uLL

0 , i.e., it is zero for r12
1. When H=1.3, the density of
large spheres adjacent to a wall is greater than that in the
center, so the different z slices have different densities, and
the spheres in each slice overlap the plane of centers of the
adjacent slices. The excluded volume constraints generated
by those overlaps are represented in ueff

0 �i� by an oscillatory
variation with increasing r12 with period equal to the large
sphere diameter; the maximum negative amplitude of the
variation of ueff

0 �i� occurs when r12=1 and is about −1.4kBT,
while the maximum positive amplitude occurs when r12 is
about 1.5 and is about 0.55kBT. The differences between
ueff

0 �i� and uLL
0 are maximal for the intermediate cell thick-

nesses H=1.3 and 1.5. When H=1.5 the density at the wall is
smaller than when H=1.3, but the difference is small enough
that ueff

0 �i� is only slightly different from the case when H
=1.3. When H=1.8 ueff

0 �i� is sensibly zero for r12
1.3 and
the attractive amplitude at r12=1 is considerably decreased
relative to its values when H=1.3 and 1.5. The direction of
the shift in the position of the peak value of ueff

0 �i� with H, to

FIG. 4. Large sphere pair correlation functions of the q2D cell
as a function of �S: H=1.1, �L=0.8, and q=0.3.
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smaller r12, arises because the sphere closest to a chosen
sphere is more likely to be in the other wall slice and the
penetration of the two slices has the consequence that the
distance between adjacent spheres become shorter when pro-
jected onto the other wall slice.

The dependence of �ueff on the concentration of the small
spheres is shown in Fig. 6�a� for the case �L=0.8, q=0.3, and
H=1.1. Clearly, �ueff is almost purely attractive when �S is
small, but a repulsive component grows in rapidly as �S
increases; the barrier is located at r12=1+ ��S /�L�. When
�S=0.042 the repulsive barrier has a height of about 0.1 kBT
and the attractive well a depth of about kBT.

The dependence of �	 on the concentration of the small
spheres is shown in Fig. 6�b� for the case �L=0.8, q=0.3, and
H=1.1. The r12 dependence of �	 is somewhat more com-
plex than that of �ueff. The large oscillations in �	 indicate
that as the concentration of small spheres increases there is a
greater and greater tendency to form concentric shells of
large and small spheres. Thus, as �S increases the density of
pairs of large spheres with separations slightly less than r12
=1+ ��S /�L�, 2+ ��S /�L�, and 3+ ��S /�L� decreases. There
is also a weaker region of exclusion near r12=2, and �	 is
attractive in the region r12�1.1.

Figure 7 displays the dependence of �ueff and �	 on H
for the mixture with �L=0.8, �S=0.028, and q=0.3 in the

center of the q2D simulation cell. The values of �ueff�3D�
shown in Fig. 7�a� were calculated using Eq. �3.12� in �9�
with the same �S. The result in 3D is significantly smaller
than the q2D depletion interactions when H=1.1, with a 3D/
q2D ratio of about 1 /10 when r12=1. We note that this value
at r12=1 displays a smooth transition as the system confine-
ment changes from q2D to 3D, notwithstanding the oscilla-
tory behavior for larger r12. In Fig. 7�b� we display �	 for
the same q2D system. There is a marked decrease in the
amplitude of the oscillations of �	 as H increases.

Figure 8 shows the dependence of and on H, at the layers
of the walls, for the same mixture as discussed with respect
to Fig. 7. As before, the values of �ueff�3D� shown were
calculated using Eq. �3.12� of Ref. �9� with the same �S.

Finally, Fig. 9�a� shows the dependence of �ueff and �	
on �L for the case H=1.1, q=0.3, and �S=0.028. The calcu-
lated �ueff�3D� is also shown. Since �ueff�3D� is not depen-
dent on �L in 3D it serves equally well for comparison with
all three different simulation results. Unlike 3D systems,
�ueff in a q2D system is slightly sensitive to �L because
NS / �actual free volume� increases as the system becomes
more densely populated with large spheres. This variation is
negligible in 3D when the density of large spheres is low; but
in the more compact q2D system it results in a distinguish-

FIG. 5. Effective pair potentials of pure hard sphere systems �a�
at the center and �b� at the wall as a function of H.

FIG. 6. �a� �	 and �b� �ueff as a function of �S when H=1.1,
�L=0.8, and q=0.3.
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able enhancement in depletion interaction. Fig. 9�b� shows
that the amplitudes of the oscillations of �	 increase as �L
increases; there are also shifts to smaller separation of the
secondary and tertiary peaks of �	 as �L increases.

IV. DISCUSSION

Castaneda-Priego, Rodriguez-Lopez, and Mendez-
Alcarez �PLA� �12� have reported the results of studies of the
depletion interaction in 2D hard disk mixtures. They define
the depletion interaction in a fashion analogous with Eq.
�3.2�, i.e., as the effective interaction between the large disks,
but they focus attention on the limit in which the pair of large
disks is infinitely dilute in the fluid of small disks. A com-
parison of their results and ours is hindered by the difficulty
of reconciling the definitions of the small particle packing
fraction in the two studies. In the PLA study the small disk
packing fraction is defined by coverage of the plane, whereas
in our study the small sphere packing fraction is defined in
terms of the volume occupied. If we imagine that the centers
of all of the small spheres in the q2D system lie in the mid-
plane between the confining walls we can correlate the PLA
area fraction with our volume packing fraction by consider-

ing the ratio �S
PLA/�S= ��NS�S

2 /4A� / �NS�S
3 /6AH�. Consider-

ing only qualitative features of the 2D and q2D simulation
results, the most apt comparison between the PLA results
and those reported in this paper is for the data set shown in
Fig. 6�a� with H=1.1, �L=0.8, and q=0.3. In that case, not-
ing that the small spheres have diameter 0.3, the cell wall
separation corresponds to 3.67�S, and �S

PLA/�S=17.3, so the
q2D mixture with �S=0.028 is to be compared with the 2D
mixture with �S

PLA=0.48. Comparing the data in Fig. 3 of
Ref. �12� with the data in Fig. 6�a� of this paper reveals that
the magnitude of the effective potential in the 2D binary hard
disk mixture is about one order of magnitude larger and it
has more prominent oscillations as a function of r12 than
does the effective potential in the q2D binary hard sphere
mixture. Clearly, the effect of deviations from 2D geometry
must be considered in any analysis of experimental data
since only q2D geometries can be realized in the real world.

By collecting the pair correlation functions and extracting
effective pair potentials in different layers, we find nonzero
effective pair potentials in bare one-component systems. This
potential �Figs. 5�a� and 5�b�� has an attractive �1.5kBT� well
and oscillates around zero with period �L. The source of the

FIG. 7. �a� �	 and �b� �ueff in the center of the q2D cell as a
function of H when �L=0.8, q=0.3, and �S=0.028. The 3D effec-
tive pair potential shown was calculated using Eq. �3.12� of Ref.
�9�.

FIG. 8. �a� �	 and �b� �ueff at the wall of the q2D cell as a
function of H when �L=0.8, q=0.3, and �S=0.028. The 3D effec-
tive pair potential shown was calculated using Eq. �3.12� of Ref.
�9�.
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potential is from the structure of the particles in the neigh-
boring layers and is not observed in single-slice systems
�H=1.1�. This potential is purely entropic and depends only

on the density and the geometry of the system.
We note that the magnitude of �ueff under all the condi-

tions considered in this paper is of order a few tenths of kBT,
and that of �	 typically a factor of two larger. These values
are much smaller than inferred from the experimental data of
Cui et al. �1�. Consequently, we must admit that a hard
sphere mixture enclosed between smooth hard plates does
not adequately represent the experimental system. We show
elsewhere �13� that modifying the model system by inclusion
of distributions of the large and small sphere diameters has
profound effects on �ueff but still does not account for the
experimental data. We suggest that in the experimental q2D
system the influence of the interface between the hydropho-
bic cell walls and the aqueous colloid suspension on the
effective colloid–colloid interaction is more important than
generally believed to be the case. Indeed, elsewhere �18� we
have shown that a q2D colloid suspension of the same par-
ticles as studied by Cui, Lin, and Rice is more confined to
the midplane of the cell than expected. The distribution of
colloid particle displacements along the z direction was used
to infer an effective one body potential. It was speculated
that this potential has its origin in the nonwetting of the cell
wall by the aqueous colloid suspension. It is not known if a
one-body potential of similar origin acts on the small colloid
particles in the binary mixture studied by Cui et al. Unless
that one-body potential constrained the centers of the small
spheres to the midplane with sensibly no motion in the z
direction, the increase in the depletion interaction will not be
large enough to account for the experimental data �13�.
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